در مورد حدس روتا
Authors
abstract
مترویدها در تلاش برای فراهم آوردن یک رفتار مجرد یکسان از وابستگی در جبر خطی و نظریه گراف معرفی شده اند. نام متروید ساختاری مربوط به یک ماتریس را القا می کند. تعریف ویتنی تنوعی شگفت انگیز از ساختارهای ترکیبیاتی را در برداشت. از این گذشته مترویدها به طور طبیعی در بهینه سازی ترکیبیاتی پدیدار می شوند، زیرا آنها دقیقاً همان ساختارهای ترکیبیاتی هستند که الگوریتم حریصانه برای آن به نتیجه می رسد. یکی از حدس های مهم در نظریه متروید، حدس روتا می باشد که توسط جیان کارلو روتا، ریاضیدان و فیلسوف مشهور در سال ۱۹۷۰ مطرح شد. ما در این مقاله ضمن بیان مقدمات لازم و معرفی حدس روتا، به بررسی کلیات اثباتی که توسط جیوف ویتل از دانشگاه ویکتوریا با همکاری جیم گیلن از کانادا و برت جراردز از هلند برای آن اخیراً ارائه کرده اند، می پردازیم.
similar resources
حل حدسیۀ روتا
در سال ١٩٧٠ جان کارلو روتا حدسیهای مطرح کرد که یک مشخصسازی ترکیبیاتی زیبایی را برای وابستگی خطی در فضاهای برداری روی هر میدان متناهی داده شده، پیش بینی میکرد. اخیراً یک برنامۀ پژوهشی پانزده ساله را که منجر به حل حدسیۀ روتا شده است، به پایان بردهایم. در این مقاله، این حدسیه را شرح و یک توصیف کلی از اثبات آن ارائه میدهیم.
full textحدس آنتروپی مینیمال
مطالعه خمینه ها در هندسه امری طبیعی است و در این زمینه، تشخیص خمینه ها از یکدیگر مساله ای مهم است. در این راستا، ناورداهای مختلف به کار می آیند و کار تشخیص را ساده می سازند. البته به طور کلی این که بتوان فضاهای مشخصی را توسط یک یا دو ناوردا از یکدیگر تمیز داد، امری بسیار خوشبینانه به نظر می رسد، ولی اخیرا این تشخیص صورت گرفته است و نشان داده شده است که برخی مفاهیم در عین پیچیده بودن ظاهرشان، در...
full textنتایجی در مورد حدس c1-چگالش پالیس
فرض کنیم m یک منیفلد فشرده d-بعدی و بدون کران باشد و diff^r(m) که r بزرگتر و مساوی صفر است، مجموعه تمام دیفیومورفیسم ها روی m همراه با c^r-توپولوژی باشد. یکی از مسایل اصلی در دینامیک های مشتق پذیر، حدس مشهور پالیس است که به صورت زیر بیان می شود. حدس c^r-چگالش پالیس:" c^r-دیفیومورفیسم های روی m با یک مماس هموکلینیک یا یک دور چند بعدی، در متمم c^r-بستار سیستم های هذلولوی c^r-چگال هستند." در بع...
15 صفحه اولحدس سینگر-ورمر
کار روی برد اشتقاقهای روی جبرهای باناخ توسط سینگر و ورمر در سال 1955 آغاز شد. آنها نشان دادند که برد هر اشتقاق کراندار روی جبرهای باناخ تعویضپذیر، داخل رادیکال جیکوبسن قرار می گیرد. آنها حدس زدند که شرط پیوستگی اضافی است و این به حدس سینگر-ورمر مشهور شد. بیش از سی سال گذشت تا توماس در سال 1988 این حدس را ثابت کرد. در تلاش برای حل این مسئله و چند مسئله دیگر، شاخه جدیدی در آنالیز تابعی به نام نظر...
full textحدس های زیبا در نظریه گراف
به طور قطع، هر آنچه که در ریاضیات مطرح میشود الزاماً زیبا نیست. اما با باور به اینکه زیبایی در بطن بهترین قسمتهای ریاضی قرار دارد، تلاش میکنیم تا برخی از بهترین حدسهای مربوط به نظریهی گراف را گردآوری کنیم که با ملاکهای مختلف زیبایی جور در بیایند.
full textMy Resources
Save resource for easier access later
Journal title:
ریاضی و جامعهجلد ۲، شماره ۱، صفحات ۷۷-۹۱
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023